# 1,1-Organoboration of mono-1-alkynyltin compounds using dialkyl ( N -azolyl) boranes-stepwise ring enlargement of boron heterocycles ${ }^{1}$ 

Bernd Wrackmeyer ${ }^{\text {a, * }}$, Heidi E. Maisel ${ }^{\text {a }}$, Bernd Schwarze ${ }^{\text {a }}$, Wolfgang Milius ${ }^{\text {a }}$, Roland Köster ${ }^{\text {b }}$<br>${ }^{a}$ Laboratorium fuir Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth, Germany<br>${ }^{\mathrm{b}}$ Max-Planck-Institut für Kohlenforschung, D-45466 Mülheim a.d. Ruhr, Germany

Received 12 December 1996; accepted 15 December 1996


#### Abstract

Mono-1-alkynyltin compounds $1-4\left(\mathrm{Me}_{3} \mathrm{Sn}-\mathrm{C} \equiv \mathrm{CR}^{1} ; \mathrm{R}^{1}=\mathrm{H}\right.$ (1), Me (2), Ph (3), $\mathrm{SnMe}_{3}$ (4)) react with various dialkyl( $N$ azolyl)boranes $5-9$ (azolyl = pyrrolyl (a), 2,5-dimethylpyrrolyl (b), indolyl (c), carbazolyl (d)) stereospecifically by 1,1 -organoboration to give organometallic-substituted alkenes $\mathbf{1 0}-\mathbf{2 0}, 22-25$, with the trimethylstannyl and the boryl group in cis-positions at the $\mathrm{C}=\mathrm{C}$ bond. These reactions proceed via an alkynylborate-like zwitterionic intermediate ZI, and exchange of the azolyl against the 1 -alkynyl group may compete (Eq. (1)(b)) with the 1,1 -organoboration (Eq. (I)(a)), depending on the reactivity of the boron carbon bonds and the steric requirements. It is also shown that in addition to the products formed in the reactions with $1: 1$ stoichiometry other products result from the reaction of two equivalents of 1 with one equivalent of the borane. These products may be either 1,3-butadiene derivatives or allenes formed by allylic rearrangement. All products were characterized by ${ }^{1} \mathrm{H},{ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR. The molecular structure of the allene 24a was determined by X-ray structural analysis. © 1997 Elsevier Science S.A.


Keywords: Tin; 1,3-Butadienes; 1,1-Organoboration; Allylic rearrangement; Stepwise ring enlargement; X-ray analysis

## 1. Introduction

Acetylene chemistry is an active research area [1], and the presence of organometallic substituents enhances the synthetic potential of alkynes. Alkynyltin compounds are readily available [2] and serve as prominent examples for the influence of organometallic substituents on the reactivity of alkynes. Thus, the remarkably facile 1,1-organoboration of 1 -alkynyltin compounds by triorganoboranes has opened numerous use-
ful synthetic routes to organometallic-substituted alkenes (A), allenes (B), and various heterocyclic compounds (C, D, E), to name some examples [3].

C

D

E


A

B



[^0]Many of these products are of considerable interest for further transformations either at the site of the tin or the boron atom. In the latter case, the synthetic potential would be much greater with a functional group attached to boron. However, all attempts to use alkoxy(dialkyl)boranes or dialkyl(amino)boranes instead of triorganoboranes in 1,1-organoboration reactions proved to be unsuccessful [4]. The exceptional reactivity of the $N$-pyrrolyl group in $5 \mathbf{a}$ towards $\mathrm{Et}_{2} \mathrm{C}=\mathrm{O}$ was demonstrated many years ago [5] forming a new type of boron heterocycle. In recent studies on N -azolylboranes [6-8] we have found that the $N$-azolyl group behaves more as an aryl than an amino substituent. Therefore, we have now studied the reactivity of the dialkyl( $N$ azolyl)boranes 5-9 towards the mono-1-alkynyltin compounds 1-4.


## 2. Results and discussion

### 2.1. Reactions of mono-I-alkynyltin compounds 1-4 with diethyl( $N$-pyrrolyl)borane 5 a

The mono-1-alkynyltin compounds $1-4$ react stereoselectively with diethyl( $N$-pyrrolyl)borane 5a by 1,1organoboration to give the alkenes 10a-13a in quantitative yield as extremely air-sensitive, colourless to yellowish, oily liquids or as a colourless solid (13a) (Eq. (1)(a)). There is no evidence for the transfer of the N -pyrrolyl group from boron to carbon and also not for (Eq. (1)(b)). The reaction is somewhat slower than the 1,1 -organoboration with triethylborane [3]. The configuration at the $\mathrm{C}=\mathrm{C}$ bond in 10a-13a follows from the
${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ NOE difference spectra [9] and the consistent data set of all NMR data (vide infra).

2.2. Reactions of mono-1-alkynyltin compounds 2,4 with 1-( N -azolyl)-I-boracyclo-pentanes 6,7

It is known that 1-organo-1-borolanes react with mono-1-alkynyltin compounds to give six-membered rings with an exocyclic $\mathrm{C}=\mathrm{C}$ bond, and, in general, a mixture of $E / Z$-isomers is obtained [10]. Furthermore, the reaction is readily reversible (deorganoboration) [10]. In the reaction of the $1-\mathrm{N}$-azolylborolanes $\mathbf{6 a , d}$, with 2 the five-membered ring is also extended in each case and the $E$-isomers 14 c are formed stereospecifically, again in quantitative yield (Eq. (2)). The borinane ring in 14 appears to be reasonably stable with respect to deorganoboration. Similarly, the compounds 15 are formed in quantitative yield. However, distillation of 14 and 15 under reduced pressure leads to decomposition.


If one starts with the $1-\mathrm{N}$-azolyl-3-methylborolanes 7a,c, a mixture of $1-\mathrm{N}$-azolyl-4-methylborinanes 16a,c and 1- N -azolyl-5-methylborinanes 17a,c (ratio ca. 30:70)
is obtained. The insertion takes place preferably at the site which is more distant from the methyl group.


### 2.3. Reactions of mono-1-alkynyltin compounds 1,2,4 with 9-( $N$-azolyl)-9-borabicyclo[3.3.1 Inonanes 8 and 9-( $N$-carbazolyl)-9-borabicyclo[4.2.1Inonane 9d

Products with the extension of the 9borabicyclo[3.3.1]nonane system are formed as the result of the kinetical control of the reaction, as was shown for the reaction of 9-ethyl-9borabicyclo[3.3.1]nonane with compounds of type 1-4 [11,12]. The analogous products $\mathbf{1 8}-\mathbf{2 0}$ were formed in the reaction of $8 \mathbf{a}$ or $\mathbf{8 c}$ with $\mathbf{1 , 2 , 4}$ (Eq. (3)).


However, in the case of $\mathbf{8 c}$ a side reaction takes place which becomes dominant in the reaction of $8 \mathbf{d}$ with 2 and 4: exchange of the $N$-azolyl group against the 1 -alkynyl group (see Eq. (1)(b)), to give $N$-trimethyl-stannyl-carbazole and 9-alkynyl-9-borabicyclo[3.3.1]nonane. This was studied in detail for the reaction of $\mathbf{8 d}$ with 2 (Scheme 1). By using an excess of 2 the final products can be identified as $N$-trimethylstannylcarbazole and the 9-borabicyclo[3.3.3]undecane derivative 21 which results from the stepwise reaction of 9-(1-propynyl)-9-borabicyclo[3.3.1]nonane with two equivalents of 2 (Scheme 1 (b)/(c)). The 9borabicyclo[3.3.2]decane derivative of the $1: 1$ reaction could not be identified.

This competition between the reaction according Eq. (1)(a) and Eq. (1)(b) becomes effective in the case of steric crowding and if the extension of the bicyclic system is not a particularly strong driving force, as is evident for the 9 -borabicyclo[3.3.1]nonane system [11]. The latter argument can be proved by studying the analogous reaction of 9d [8] where we are dealing with a 9 -borabicyclo[4.2.1]nonane system. The five-mem-


Scheme 1.
bered part of the bicycle should be the most reactive site for 1,1 -organoboration, readily available for ring extension. Indeed, the reactions of 9d with 2 and 4 lead mainly to the 1,1 -organoboration products 22 and 23 with a 9 -borabicyclo[4.2.2]decane group ( Ec. . (4)). The 1-alkynylazolyl exchange as in Scheme 1(a) is only a side reaction ( $10-30 \%$ ).


### 2.4. Reaction of the 1,1-organoboration products $13 a$ and $15 \mathrm{c}, \mathrm{d}$ with bis (rimethylstannyl)ethyne 4, a route to organometallic-substituted allenes

Organometallic-substituted allenes become available from the reaction of triorganoboranes with certain mono-1-alkynyltin compounds in a $1: 2$ ratio [13,14]. As shown in Scheme 2, the same route is open for diethyl( $N$-pyrrolyl)borane (5a). The reaction can be carried out either by starting with 13a (as shown) or by starting with $\mathbf{5 a}$ and two equivalents of 4 , without isolating the alkene 13a. This is a quantitative reaction and the allene 24a can be isolated as a colourless crystalline solid. Suitable crystals for X-ray analysis (vide infra) can be obtained from hexane at $-78^{\circ} \mathrm{C}$.


Scheme 2.

The 1,3-butadiene derivative shown in Scheme 2 is the most likely intermediate on the way to the allene 24a. The facile 1,3 -allyl migration of the boryl group to 24a requires a certain conformation of the butadiene system which is readily reached by non-cyclic systems but may be less favourable for cyclic systems. However, the reaction of the borinanes $15 \mathrm{c}, \mathrm{d}$ with 4 proceeds smoothly solely to the allenes $\mathbf{2 5 c}$,d with a borepane ring (Scheme 3). Therefore, repulsive forces between trimethylstannyl groups must be the driving force of the rearrangement to the allene. Again a borepane cycle is formed; however, the carbon atom C-4 is now part of the cycle and carbon atom C-2 has become part of the allene system (see Scheme 3 ).

### 2.5. X-ray structural analysis of the allene 24a

Data relevant to the structure are given in Section 4.2. ${ }^{2}$ The molecular structure of $\mathbf{2 4 a}$ is shown in Fig. 1. The structure is closely related to that of the corresponding allene obtained by 1,1-organoboration of two equivalents of 4 with triethylborane [14]. The allene unit is almost linear (angle $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)=174.0(5)^{\circ}$ ), and the angle between the planes $\operatorname{Sn}(1) \mathrm{C}(1) \mathrm{Sn}(2)$ and $C(4) C 3) C(5)$ is $90.50^{\circ}$, as expected for an allene. The bond lengths $\mathrm{Sn}-\mathrm{C}$ are in the normal range except of $\mathrm{Sn}(3)-\mathrm{C}(4)$ and $\mathrm{Sn}(4)-\mathrm{C}(4)$ (219.8(4) and $220.7(4) \mathrm{pm})$ which are elongated as a result of $\mathrm{Sn}-\mathrm{C}$ hyperconjugation. This has been observed for similar structures [14] and also for other organotin compounds containing an electron deficient boron atom $[15,16]$. The $\mathrm{B}-\mathrm{N}$ bond ( $146.2(7) \mathrm{pm}$ ) in 24a must be regarded as a single bond between $\mathrm{sp}^{2}$ hybridized boron and nitrogen atoms. Since the plane of the pyrrole ring is only slightly twisted (20.3 ${ }^{\circ}$ ) against the plane $\mathrm{BC}(4) \mathrm{C}(19) \mathrm{N}$, this would in

[^1]

Scheme 3.
principle allow for significant $\mathrm{BN}(\mathrm{pp}) \pi$ interactions. However, the long $\mathrm{B}-\mathrm{N}$ bond, which is markedly longer than in typical aminoboranes (range of ca. 138-144 pm [17]), and even longer than in tris(2,5-dimethylpyrrolyl)borane where the pyrrolyl rings are severely twisted against the $\mathrm{BN}_{3}$ plane [6], indicates that such $\pi$ interactions must be rather weak.

### 2.6. NMR spectroscopic results

All NMR spectroscopic data support the proposed structures. ${ }^{11} \mathrm{~B},{ }^{13} \mathrm{C},{ }^{119} \mathrm{Sn}$ NMR data of the alkenes are given in Table $1(\mathbf{1 0}-\mathbf{1 3})$, Table $2(14,15)$ and Table 3(18-20, 22, 23). Table 4 contains NMR data of the bicyclic 1,3-diene 23, and Table 5 lists the ${ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR data of the allenes 24 and 25 . ${ }^{1} \mathrm{H}$ NMR data and additional ${ }^{13} \mathrm{C}$ of the azolyl groups are given in Section 4. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals were assigned by the usual 1 D and 2 D techniques. In the case of the ${ }^{15} \mathrm{C}$ NMR signals, ${ }^{117 / 119} \mathrm{Sn}$ satellites according to the coupling constants $J\left({ }^{117 / 119} \mathrm{Sn},{ }^{13} \mathrm{C}\right)$, and the broadening owing to partially relaxed scalar one-bond ${ }^{13} \mathrm{C}-{ }^{11} \mathrm{~B}$ coupling serve as additional criteria.

Straightforward information on the progress of the reactions and the product distribution is provided by ${ }^{119} \mathrm{Sn}$ NMR spectra of reaction solutions (see Fig. 2).


Fig. 1. Molecular structure of 24a.

Table 1
${ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR data ${ }^{\text {a }}$ of the alkenes $10-13$

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  | 10a | 11 a | 12a ${ }^{\text {b }}$ | 13a ${ }^{\text {c }}$ |
| R ${ }^{1}$ |  | H | Me | Ph | $\mathrm{SNMe}_{3}$ |
| az |  | pyrrolyl | pyrrolyl | pyrrolyl | pyrrolyl |
| $\delta^{11} \mathrm{~B}$ |  | 53.9 | 53.7 | 53.3 | 53.5 |
| $\delta^{119} \mathrm{Sn}$ |  | -53.0 | $-45.3$ | -45.8 | -44.8 |
| $\delta^{13} \mathrm{C}\left[J\left({ }^{19} \mathrm{Sn},{ }^{13} \mathrm{C}\right]\right.$ | $=\mathrm{CSn}$ | 132.0 [482] | 140.3 [513] | 148.9 [465] | 147.8 |
|  | $=\mathrm{CB}$ | 165.9 [br] | 155.6 [br] | 157.1 [br] | 178.1 [br] |
|  | C-1 | 34.0 [87.5] | 23.6 [74.6] | 26.8 [65.4] | 38.5 [129][112] |
|  | C-2 | 14.2 [6.0] | 13.0 [9.4] | 14.5 [8.6] | 14.8 [8.5] |
|  | C-1' | 13.8 [br] | 12.9 [br] | 14.0 [br] | 13.1 [br] |
|  | C-2' | 9.8 | 8.9 | 9.6 | 9.7 |
|  | MeSn | -9.3 [343] | -10.0[324] | -8.7 [333] | -7.8 [316] |
|  | $\mathrm{R}^{1}$ | - | 19.2 [63.8] | - ${ }^{\text {b }}$ | - 5.5 [306] |

${ }^{4} \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$; [br]: broad signal owing to partially relaxed ${ }^{13} \mathrm{C}-{ }^{11} \mathrm{~B}$ scalar coupling
${ }^{\mathrm{b}} \delta^{13} \mathrm{C}(\mathrm{Ph})=146.1[40.4]\left(\mathrm{C}-1^{\prime}\right) ; 128.6\left(\mathrm{C}-2^{\prime} / 6^{\prime}\right) ; 126.9\left(\mathrm{C}-3^{\prime} / 5^{\prime}\right) ; 125.3\left(\mathrm{C}-4^{\prime}\right)$.

- $\delta^{119} \mathrm{Sn}\left(\mathrm{R}^{1}\right)=-55.8[\mathrm{br}]$.

Differential broadening of the ${ }^{119} \mathrm{Sn}$ NMR signals as the result of partially relaxed scalar ${ }^{119} \mathrm{Sn}-{ }^{11} \mathrm{~B}$ coupling across three bonds with $\beta^{3} J\left({ }^{119} \mathrm{Sn},{ }^{11} \mathrm{~B}\right)_{\text {trans }} \mid>$ $\beta^{3} J\left({ }^{119} \mathrm{Sn},{ }^{11} \mathrm{~B}\right)_{\text {cis }} \mid$ is always observed for alkenes prepared from the organoboration of 4. Another example is the ${ }^{119} \mathrm{Sn}$ NMR spectrum of the reaction solution resulting from the organoboration of $\mathbf{2}$ with $\mathbf{8 d}$ which gave first evidence for the products ( $N$-trimethylstannylcarbazole and the bicyclic 1,3-diene 21 (see Scheme 1) with one broad and one sharp ${ }^{119} \mathrm{Sn}$ NMR signal and
$\left.{ }^{5} J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right)=27.9 \mathrm{~Hz}\right)$ of this fairly complex reaction.
${ }^{11} \mathrm{~B}$ NMR spectra are less informative since $\delta^{11} \mathrm{~B}$ values of starting materials and products are rather similar, with few exceptions, although the larger linewidths of the ${ }^{11} \mathrm{~B}$ NMR signals for the products indicate that a reaction has taken place.

There is a complete NMR data set available for alkenes $[18,19]$, analogous to $\mathbf{1 0} \mathbf{- 1 3}$ in which the pyrrolyl group is replaced by an ethyl group. With

Table 2
${ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR data ${ }^{\text {a }}$ of the alkenes 14,15

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  | 14c | 14d | 15a ${ }^{\text {b }}$ | $15 b^{\text {c }}$ | $15 \mathrm{c}^{\text {d }}$ | $15 \mathrm{~d}{ }^{\text {² }}$ |
| R ${ }^{1}$ |  | Me | Me | $\mathrm{SnMe}_{3}$ | $\mathrm{SnMe}_{3}$ | $\mathrm{SnMe}_{3}$ | $\mathrm{SnMe}_{3}$ |
| az |  | indolyl | carbazolyl | pyrrolyl | 2,5-(Me) 2 -pyrrolyl | indolyl | carbazolyl |
| $\delta^{11} \mathrm{~B}$ |  | 53.5 | 53.0 | 52.5 | 53.5 | 53.4 | 52.3 |
| $\delta^{119} \mathrm{Sn}$ |  | -42.9 | -44.8 | -38.2 | -44.5 | -39.2/-40.0 | -43.3 |
| $\delta^{13} \mathrm{C}\left[J\left({ }^{19} \mathrm{Sn},{ }^{13} \mathrm{C}\right]\right.$ | $=\mathrm{CSn}$ | 156.2 | 145.3 | 152.7 [338][286] | 149.6 [342][293] | 148.1 [337][289]/155.3 [335][282] | 151.7 [603] |
|  | $=\mathrm{CB}$ | n.o. | 157.0 [br] | 177.7 [br] | 186.4 [br] | 178.8 [br]/179.8 [br] | 179.6 [br] |
|  | C-3 | 33.4 [70.4] | 33.2 [71.0] | 49.6 [124][110] | 48.8 [125][111] | 48.2 [123][108]/49.5 [127][109] | 48.3 [123][111] |
|  | C-4 | 28.9 | 28.9 | 31.1 [6.7] | 30.8 | 30.3/31.6 | 30.4 [26.0] |
|  | C-5 | 26.3 | 26.7 | 27.7 | 27.6 | 26.7/28.5 | 27.4 [7.9] |
|  | C-6 | 22.9 [br] | 24.8 [br] | 21.7 [br] | 25.3 [br] | 22.6 [br]/24.4 [br] | 25.1 [br] |
|  | MeSn | -8.4 [328] | -8.7 [325.9] | -6.8[318] | -6.9[312][10.8] | - 6.4 [317][9.0]/-7.0[313][8.9] | $-6.8[316][10.8]$ |
|  | $\mathrm{R}^{1}$ | 20.1 | 21.4 | -6.0[307] | -5.8[303][9.8] | -5.7 [306][9.5]/-6.0[305][9.8] | -5.9 [305][9.8] |

[^2]${ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$ and ${ }^{119}$ Sn NMR data ${ }^{a}$ of the alkenes $18-20,22,23$

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  | $18 a^{\text {b }}$ | $19 c^{\text {c }}$ | 20a ${ }^{\text {d }}$ | 20c ${ }^{\text {e }}$ | 22d ${ }^{\text {f }}$ | 23d ${ }^{\text {g }}$ |
| $\mathrm{R}^{1}$ |  | H | Me | $\mathrm{SnMe}_{3}$ | $\mathrm{SnMe}_{3}$ | Me | $\mathrm{SnMe}_{3}$ |
| $\mathrm{R}^{2}-\mathrm{R}^{2}$ |  | 1,5-cyclooctanediyl | 1,5-cyclooctanediyl | 1,5-cyclooctanediyl | 1,5-cyclooctanediyl | 1,4-cyclooctanediyl | 1,4-cyclooctanediyl |
| az |  | pyrrolyl | indolyl | pyrrolyl | indolyl | carbazolyl | carbazolyl |
| $\delta^{11} \mathrm{~B}$ |  | 54.2 | 56.7 | 53.0 | 58.1 | $58.7$ | $60.8$ |
| $\delta^{119} \mathrm{Sn}$ |  | -53.0 | -43.4 | -39.9 | -40.1/-42.6 | -45.6 | -47.7 |
| $\delta^{1.3} \mathrm{C}\left[J\left({ }^{119} \mathrm{Sn},{ }^{13} \mathrm{C}\right]\right.$ | $=\mathrm{CSn}$ | 144.8 [474] | 142.0 | 161.5 | 147.8 [587]/158.3 [570] | 146.9 | 160.3 |
|  | $=\mathrm{CB}$ | 169.4 [br] | 162.0 [br] | 182.6 [br] | 182.6 [br]/184.8 [br] | 165.7 [br] | 181.3 [br] |
|  | $C\left(\mathrm{R}^{2}\right)-\mathrm{C}=$ | 49.2 [78.5] | - | -49.8 | 48.9 [120][112] | 37.8 [66.6] | 54.9 [113] |
|  | MeSn | -8.2 [348] | -8.0 | -5.2 [324] | - $5.3[304][9.8] /-5.5[305][9.8]$ | -8.1 [324] | $-6.5[315][9.8]$ |
|  | $\mathrm{R}^{1}$ | - | 21.1 | $-6.2[317]$ | $-6.0[317][9.8] /-6.2[315][9.8]$ | 26.0 | $-5.7[315][9.8]$ |

[^3]respect to these compounds one observes in 10-13 a fairly constant shift of the ${ }^{13} \mathrm{C}(\mathrm{Sn}-\mathrm{C}=)$ resonances to higher frequencies (ca. $7-8 \mathrm{ppm}$ ) and of the ${ }^{13} \mathrm{C}(\mathrm{B}-\mathrm{C}=$ ) resonances to lower frequencies (ca. $6-8 \mathrm{ppm}$ ). The latter effect is in the same direction and in a similar range as for the ${ }^{13} \mathrm{C}\left(\mathrm{BCH}_{2}\right)$ resonance and, therefore, it is related mainly to $\sigma$-bonding, whereas the change in the ${ }^{13} \mathrm{C}(\mathrm{Sn}-\mathrm{C}=)$ signal is related to the effect of the boryl group on the $\sigma$ and $\pi$ interactions of the $\mathrm{C}=\mathrm{C}$ bond. The temperature dependence of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the alkenes $\mathbf{1 0}-\mathbf{2 0}$ is analogous to that studied for similar alkenes [20]. The plane of the boryl group is preferably oriented orthogonal to the $C=C B$ plane [21], and at the same time there is restricted rotation about the $\mathrm{B}-\mathrm{N}$ bond for steric reasons. In any case, the difference in the influence on the bonding situation in the alkene exerted by an $N$ azolyl(alkyl)boryl or the dialkylboryl group appears to be small since the changes in the $\delta^{119} \mathrm{Sn}$ values are small. In general, ${ }^{119} \mathrm{Sn}$ nuclear magnetic shielding is very sensitive to small changes in the bonding situation [22]. However, in the case of the alkenes $10-13,{ }^{119} \mathrm{Sn}$ nuclear shielding is reduced only by $2-3 \mathrm{ppm}$ when compared with the analogous diethylboryl compounds [18,19].

The solid-state structures of the allene 24a and its $\mathrm{Et}_{2} \mathrm{~B}$ analogue [14] are similar, and this is also true for relevant NMR data. In the case of the cyclic derivatives $\mathbf{2 5 c}$ and 25d, one notes the influence of the steric requirements of the carbazolyl group in particular for the $\delta^{11} \mathrm{~B}$ and the $\delta^{119} \mathrm{Sn}$ values (Table 5). In contrast to $\mathbf{2 4 a}$ and 25c the ${ }^{119} \mathrm{Sn}$ NMR signals of 25d are close together (see Fig. 3) and the ${ }^{119} \mathrm{Sn}$ satellites show the typical pattern of an $A B$ spin system. Since the molecu-


Fig. 2. $93.3 \mathrm{MHz}{ }^{119} \mathrm{Sn}^{1} \mathrm{H}$ NMR spectrum (inverse gated) of 13a in the reaction mixture at room temperature. The ${ }^{119} \mathrm{Sn}$ atom in transposition to the boron atom shows a broad signal owing to partially relaxed scalar coupling ${ }^{2} J\left({ }^{119} \mathrm{Sn},{ }^{11} \mathrm{~B}\right)$. The ${ }^{119} \mathrm{Sn}$ satellites represent an AB spin system (indicated with $\mathrm{O},{ }^{2} J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right)=830 \mathrm{~Hz}$ ). The ${ }^{117}$ Sn satellites are indicated with + .
lar structure of $\mathbf{2 4 a}$ (Fig. 1) shows four different surroundings for the $\mathrm{Me}_{3} \mathrm{Sn}$ groups, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra were measured at low temperature. At $-50^{\circ} \mathrm{C}$, one observes four different ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR signals for the $\mathrm{Me}_{3} \mathrm{Sn}$ groups. As a result of quadrupolar decoupling at low temperature, the ${ }^{13} \mathrm{C}$ NMR signals for boron-bonded carbon atoms become sharp and ${ }^{117 / 119} \mathrm{Sn}$ satellites according to coupling constants $J\left({ }^{117 / 119} \mathrm{Sn},{ }^{13} \mathrm{C}\right)$ become resolved. The fairly small magnitude of $\left|{ }^{\prime} J\left({ }^{119} \mathrm{Sn},{ }^{13} \mathrm{C}\right)\right|=160.0$ and 128.0 Hz for the quaternary aliphatic carbon atom ( $\delta 38.1$ ) supports the concept of $\mathrm{Sn}-\mathrm{C}$ hyperconjugation. The ${ }^{119} \mathrm{Sn}$
${ }^{\text {Table }} \mathrm{B},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR data ${ }^{\text {a }}$ of the butadiene derivative $21{ }^{\mathrm{b}}$


[^4]

Fig. 3. $93.3 \mathrm{MHz}{ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (inverse gated) of 25d at room temperature. The ${ }^{119} \mathrm{Sn}$ satellites represent an AB spin system (indicated with $O,{ }^{5} J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right)=219 \mathrm{~Hz}$ ). The ${ }^{117} \mathrm{Sn}$ satellites show eight AX spin systems which were not clearly resolved. Two for the respective ${ }^{2} J\left({ }^{119} \mathrm{Sn},{ }^{117} \mathrm{Sn}\right.$ ) (ca. 224 Hz for $=\mathrm{CSn}_{2}$ and ca. 216 Hz for $\left.\mathrm{B}-\mathrm{CSn}_{2}\right)$ and the ${ }^{5} J\left({ }^{119} \mathrm{Sn},{ }^{117} \mathrm{Sn}\right)$ couplings due to the diastereotomers containing ${ }^{117} \mathrm{Sn}$, and ${ }^{119} \mathrm{Sn}$ isotopomers (see also Ref. [14]).

NMR spectrum of 24 a at $-50^{\circ} \mathrm{C}$ (see Fig. 4) shows that the parent signals are accompanied by all kinds of ${ }^{117 / 119} \mathrm{Sn}$ satellites. In comparison with the averaged room temperature ${ }^{119} \mathrm{Sn}$ NMR spectrum it is evident that there is now one set each of small and large coupling constants ${ }^{5} J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right.$ ) (ca. 20 and ca. 387 Hz ). By comparison with ${ }^{5} J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right)$ for a cyclic derivative where the mutual positions of the tin atoms are fixed


Fig. 4. $93.3 \mathrm{MHz}{ }^{119} \mathrm{Sn}\left\{{ }^{\prime} \mathrm{H}\right\}$ NMR spectrum (inverse gated) of $\mathbf{2 4 a}$ at $-50^{\circ} \mathrm{C}$. The splitting of the signals is due to the rotational barrier about the $=\mathrm{C}-\mathrm{C}$ bond. + indicates an impurity. The ${ }^{117 / 119} \mathrm{Sn}$ satellites are clearly visable: ${ }^{2} J\left({ }^{119} \mathrm{Sn}(\mathrm{c}),{ }^{19} \mathrm{Sn}(\mathrm{c})\right)=400 \mathrm{~Hz}$, ${ }^{2} J\left({ }^{119} \mathrm{Sn}(\mathrm{a}),{ }^{119} \mathrm{Sn}(\mathrm{b})\right)=441 \mathrm{~Hz},{ }^{5} J\left({ }^{(19} \mathrm{Sn}(\mathrm{a}),{ }^{119} \mathrm{Sn}(\mathrm{c})\right)=387 \mathrm{~Hz}$ and ${ }^{2} J\left({ }^{119} \mathrm{Sn}(\mathrm{b}),{ }^{119} \mathrm{Sn}(\mathrm{c})\right)=20 \mathrm{~Hz}$ (not resolved in Fig. 1).
[13], it can be assumed that the large value for $\left|{ }^{5} J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right)\right|$ belongs to $\mathrm{Sn}(1)-\mathrm{Sn}(3)$ and $\mathrm{Sn}(2)$ $\mathrm{Sn}(3)$ coupling (torsion angle $\mathrm{Sn}(3)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)=$ $\left.11.8^{\circ}\right)$, and the small value for $\left|5 J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right)\right|$ to $\mathrm{Sn}(1)-\mathrm{Sn}(4)$ and $\mathrm{Sn}(2)-\mathrm{Sn}(4)$ coupling (torsion angle $\left.\mathrm{Sn}(4)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)=127.0^{\circ}\right)$.

Table 5
${ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR data ${ }^{\text {a }}$ of the allenes 24,25


[^5]
## 3. Conclusions

Dialkyl( $N$-azolyl)boranes are attractive reagents for stereoselective 1,1-organoboration reactions. Their advantage compared to trialkylboranes lies in the presence of a functional group at the boron atom which can be exploited for further reactions as will be shown in future studies. There is now much more evidence for the application of 1,1 -organoboration to ring expansion of boron heterocycles. The products of the 1,1-organoboration reactions are of considerable interest for multinuclear NMR spectroscopic studies. In the case of the allene 24a, the NMR data at low temperature, in particular the ${ }^{119} \mathrm{Sn}$ NMR parameters, correspond closely to prominent structural features determined by X-ray structural analysis.

## 4. Experimental details

All reactions and handling of compounds were carried out observing necessary precautions to exclude oxygen and moisture. The mono-1-alkynyltin compounds 1-4 were prepared by closely following literature procedures [23]. Diethyl( $N$-pyrrolyl)borane 5a [24] was available and the other $N$-azolylboranes including 9d were prepared as described recently [8]. Elemental analysis were carried out by Pascher, Remagen. Mass spectra (EI-MS; 70 eV ) were recorded with a VarianMAT CH 7 instrument with direct inlet. NMR spectra were measured for solutions in $\mathrm{CDCl}_{3}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25^{\circ} \mathrm{C}$ by using Jeol EX270 $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ and Bruker ARX 250 and DRX 500 spectrometers equipped for multinuclear measurements (chemical shifts are referred to $\mathrm{Me}_{4} \mathrm{Si}$ $\left(\delta^{1} \mathrm{H}\left(\mathrm{CHCl}_{3} / \mathrm{CDCl}_{3}\right)=7.24, \quad\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)=7.15\right.$; $\left.\delta^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right)=77.0, \quad\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)=128.0\right), \quad \mathrm{Et}_{2} \mathrm{O}-\mathrm{BF}_{3}$ $\left(\delta^{11} \mathrm{~B}\right.$ with $\left.\Xi\left({ }^{11} \mathrm{~B}\right)=32.083971 \mathrm{MHz}\right)$, and $\mathrm{Me}_{4} \mathrm{Sn}$ $\left(\delta^{119} \mathrm{Sn}\right.$ with $\left.\Xi\left({ }^{119} \mathrm{Sn}\right)=37.290665 \mathrm{MHz}\right)$ ).

### 4.1. Preparative work

General procedure for all 1,1-organoboration reactions: the respective 1 -alkynyltin compound ( 5 mmol in general but 10 mmol of 4 in the case of the synthesis of the allenes 24 and 25) was dissolved in 25 ml of hexane, cooled to $-78^{\circ} \mathrm{C}$ and 5 mmol of the N -azolylborane were added in one portion. The mixture was warmed to room temperature and heated for 5 min at $60^{\circ} \mathrm{C}$. Then the solvent was removed in vacuo and the pure compounds were left as colourless to yellowish, oily liquids or solids.

If reactions were carried out for NMR measurements, the respective $N$-azolylborane ( 1 mmol ) was dissolved in 0.5 ml of $\mathrm{C}_{6} \mathrm{D}_{6}$ in an NMR tube and 1 mmol of the mono-l-alkynyltin compound was added. The compounds were mixed and the progress of the reactions
was monitored by ${ }^{11} \mathrm{~B}$ and ${ }^{119} \mathrm{Sn}$ NMR. The samples were stored at room temperature. After 2 days the reactions were complete. All 1,1-organoborations proceeded quantitatively.

10a: yellow liquid; yield $67 \%$ after distillation (b.p.: $\left.69^{\circ} \mathrm{C} / 0.05 \mathrm{Torr}\right){ }^{13} \mathrm{C}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}, ~ 62.9 \mathrm{MHz}$ ): $\delta^{13} \mathrm{C}($ pyrrolyl group $)=127.6 / 124.2 \quad(\mathrm{C}-2 / 5) ;$ 115.2/114.2 (C-3/4). ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}$ $\left[J\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)\right]\left[J\left({ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}\right)\right]=7.15 \quad(\mathrm{~m})(\mathrm{H}-2 / 5$, pyrrolyl group); $6.52(\mathrm{~s})(89.0 \mathrm{~Hz})(=\mathrm{CH}) ; 6.42(\mathrm{~m})(\mathrm{H}-3 / 5$, pyrrolyl group); 2.37 (qd)[7.3 Hz][1.5 Hz] $\left(=\mathrm{CCH}_{2}\right)$; $1.42(\mathrm{q})[7.9 \mathrm{~Hz}]\left(\mathrm{BC} \mathrm{H}_{2}\right) ; 1.16(\mathrm{t})[7.3 \mathrm{~Hz}]\left(=\mathrm{CCH}_{2} \mathrm{CH}_{3}\right)$; $1.08(\mathrm{t})[7.9 \mathrm{~Hz}]\left(\mathrm{BCH}_{2} \mathrm{CH}_{3}\right) ; 0.07(\mathrm{~s})(54.2 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right)$.

11a: yellow liquid; yield $65 \%$ after distillation (b.p.: $55^{\circ} \mathrm{C} / 10^{-3}$ Torr). ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}, \quad 62.9 \mathrm{MHz}$ ): $\delta^{13} \mathrm{C}$ (pyrrolyl group) $=126.9 / 123.4 \quad(\mathrm{C}-2 / 5)$; 114.8/113.2 (C-3/4). ${ }^{1}$ H NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}$ $\left[J\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)\right]\left[J\left({ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}\right)\right]=7.01 \quad(\mathrm{~m})(\mathrm{H}-2 / 5, \quad$ pyrrolyl group); 6.33 (m)(H-3/4, pyrrolyl group); 2.40 $(\mathrm{m})\left(=\mathrm{CC} \mathrm{H} \mathrm{H}_{2}\right) ; \quad 2.04 \quad(\mathrm{~s})(51.2 \mathrm{~Hz})(=\mathrm{C} \mathrm{Me}) ; \quad 1.30$ (q) $\left(\mathrm{BC} \mathrm{H} H_{2}\right) ; 1.03 \quad(\mathrm{t})[7.1 \mathrm{~Hz}]\left(=\mathrm{CCH}_{2} \mathrm{CH}_{3}^{\prime}\right) ; 0.86$ (t) $[8.0 \mathrm{~Hz}]\left(\mathrm{BCH}_{2} \mathrm{CH}_{3}\right) ;-0.07 \quad(\mathrm{~s})(52.2 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right)$. EI-MS $\left(\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{BNSn}\right): m / z(\%)=324$ (15) $\left[\mathrm{M}^{+}\right] ; 296$ (10) $\left[\mathrm{M}^{+}-2 \mathrm{Me}\right] ; 147$ (100) $\left[\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{SnMe}_{3} \mathrm{l}_{2}\right]\right.$.

12a: yellow oil. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}($ pyrrolyl group $)=127.5 / 124.3 \quad(\mathrm{C}-2 / 5)$; $115.3 / 114.3(\mathrm{C}-3 / 4){ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}$ $\left[J\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)\right]\left[J\left({ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}\right)\right]=7.28 / 7.07 \quad(\mathrm{~m})(\mathrm{H}-2 / 5$, pyrrolyl group); $7.20(\mathrm{~m}) ; 7.00(\mathrm{~m}) 6.33(\mathrm{rn})(\mathrm{H}-3 / 4$, pyrrolyl group); 2.50/2.20 (m) $\left(=\mathrm{CCH}_{2}\right) ; 1.57 / 1.48$ $(\mathrm{m})\left(\mathrm{BCH}_{2}\right) ; \quad 1.27 \quad(\mathrm{t})[7.1 \mathrm{~Hz}]\left(=\mathrm{CH}_{2} \mathrm{C} \mathrm{H}_{3}\right) ; \quad 0.89$ (t) $[7.5 \mathrm{~Hz}]\left(\mathrm{BCH}_{2} \mathrm{CH}_{3}\right) ; 0.00(\mathrm{~s})\left(\mathrm{SnMe}_{3}\right)$.

13a: colourless solid; yield $93 \%$ (m.p.: $55^{\circ} \mathrm{C}$ ). $\mathrm{C}_{\text {calc }}$ $=39.5 \%, \mathrm{H}_{\text {calc }}=6.6 \%, \mathrm{C}_{\text {found }}=39.4 \%, \mathrm{H}_{\text {found }}=6.6 \%$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right): \delta^{13} \mathrm{C}($ pyrrolyl group $)=$ $127.2 / 124.7$ (C-2/5), 115.1/114.2 (C-3/4. H NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}\left[J\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)\right]\left[J\left({ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}\right)\right]=7.00$ (m)(H-2/5, pyrrolyl group), $6.31 / 6.24(\mathrm{mn})(\mathrm{H}-3 / 4$, pyrrolyl group), $2.40 / 2.22(\mathrm{~m})\left(=\mathrm{CCH}_{2}\right) ; 1.35 / 1.19$ $(\mathrm{m})\left(\mathrm{BC} \mathrm{H} \mathrm{H}_{2}\right), \quad 1.02$ (t) $[7.0 \mathrm{~Hz}]\left(=\mathrm{CCH}_{2} \mathrm{CHH}_{3}\right) . \quad 0.86$ (t) $[7.8 \mathrm{~Hz}]\left(\mathrm{BCH}_{2} \mathrm{CH}_{3}\right) ; \quad 0.28 \quad(\mathrm{~s})\left(\mathrm{SnMe}_{3}\right) ;-0.03$ (s) $\left(\mathrm{SnMe}_{3}, \mathrm{R}^{1}\right)$. EI-MS $\left(\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{BNSn}_{2}\right): m / z(\%)=$ 489 (5) $\left[\mathrm{M}^{+}\right] ; 474$ (8) [ $\left.\mathrm{M}^{+}-\mathrm{Me}\right] ; 323$ (25) [ $\mathrm{M}^{+}$$\left.\mathrm{SnMe}_{3}\right] ; 165$ (100) $\left[\mathrm{SnMe}_{3}^{+}\right]$.

14e: yellow oil. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}$ (indolyl group) $=140.9(\mathrm{C}-7 \mathrm{a}) ; 134.2(\mathrm{C}-3 \mathrm{a}) ; 133.5$ (C-2); 123.4 (C-5); 122.9 (C-4); 121.1 (C-6); 116.6 (C-7). ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad\left(\mathrm{C}_{6} \mathrm{D}_{6} ; \quad 250 \mathrm{MHz}\right): \quad \delta^{1} \mathrm{H}$ $\left[J\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)\right]\left[J\left({ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}\right)\right]=7.60(\mathrm{~m}) ; 7.44(\mathrm{~d})[3.3 \mathrm{~Hz}] ;$ 7.33 (m); 7.14 (m); $6.61(\mathrm{~d}) ; 2.13(\mathrm{~s})(=\mathrm{C} M e)(49.7 \mathrm{~Hz})$; overlapping multiplets at $1.87-1.62 ;-0.07$ $(\mathrm{s})(51.2 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right)$.

14d: yellow oil. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}($ carbazolyl group $)=144.2(\mathrm{C}-4 \mathrm{a} / 5 \mathrm{a}) ; 128.8 \quad(\mathrm{C}-$ 1a/8a); 126.3 (C-3/6); 123.1 (C-7); 120.1 (C-1/8); $117.6(\mathrm{C}-5 / 5) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}=$
overlapping multiplets at 7.90-7.65 and 7.25-6.95 (carbazolyl group); overlapping multiplets at 2.70-1.40; $1.97(\mathrm{~s})(=\mathrm{CMe}) ;-0.33(\mathrm{~s})\left(\mathrm{SnMe}_{3}\right)$.

15a: yellow oil. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}$ (pyrrolyl group) $=126.7 / 124.5 \quad(\mathrm{C}-2 / 5)$; $115.6 / 114.8(\mathrm{C}-3 / 4) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}$ $\left[J\left({ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}\right)\right]=7.20(\mathrm{~m}) / 7.03$ (m)(pyrrolyl group); $2.48(\mathrm{~m}) ; 1.99(\mathrm{~m})$; overlapping multiplets at $1.80-1.00$; $0.31(\mathrm{~s})(50.3 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right) ;-0.01(\mathrm{~s})(50.3 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right.$, $\mathrm{R}^{1}$ ).

15b: yellow oil. ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}(2,5$-dimethylpyrrolyl group $)=136.1 \quad(\mathrm{C}-2 / 5)$; $114.9(\mathrm{C}-3 / 4) ; 18.4(\mathrm{Me}) .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}$ ): $\delta^{1} \mathrm{H} \quad\left[J\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)\right]=5.91 \quad(\mathrm{~s})($ pyrrolyl group); 2.57 (t)[5.9 Hz] (H-3); 2.23 (s)(pyrrolyl-Me); overlapping multiplets at $1.58-1.52 ; 1.14$ (t)[7.6 Hz] $(\mathrm{H}-6) ; 0.28$ (s) $\left(\mathrm{SnMe}_{3}\right) ; 0.02(\mathrm{~s})\left(\mathrm{SnMe}_{3}, \mathrm{R}^{1}\right)$.

15c: yellow oil. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}$ (indolyl group) $=141.1 / 140.7 \quad(\mathrm{C}-7 \mathrm{a})$; 134.4/133.8 (C-3a); 133.5/131.2 (C-2); 125.1/123.2(2 signals) $/ 123.1 / 121.3 / 121.0 / 117.2 / 116.4$ (C-4/C$5 / \mathrm{C}-6 / \mathrm{C}-7$ ) ; 110.6/109.8 (C-3). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$; 250 MHz ): $\delta^{\mathrm{i}} \mathrm{H}=$ overlapping multiplets at $7.5-6.5$ (indolyl group), overlapping multiplets at $2.2-1.0 ; 0.35$ $(\mathrm{s}) / 0.34(\mathrm{~s})\left(\mathrm{SnMe}_{3}\right) ;-0.06(\mathrm{~s}) /-0.20(\mathrm{~s})\left(\mathrm{SnMe}_{3}\right.$, $\mathrm{R}^{1}$ ).

15d: yellow oil. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}($ carbazolyl group $)=144.0(\mathrm{C}-4 \mathrm{a} / 5 \mathrm{a}), 128.8(\mathrm{C}-$ la/8a), 126.3 (C-3/6), 123.1 (C-2/7), 120.1 (C 1/8), $117.6(\mathrm{C}-4 / 5)$. ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right) . \delta^{1} \mathrm{H}=$ overlapping multiplets at 7.92-7.23 (carbazolyl group), overlapping multiplets at $2.87-1.40,0.46(\mathrm{~s})\left(\mathrm{SnMe}_{3}\right)$, $-0.10(\mathrm{~s})\left(\mathrm{SnMe}_{3}, \mathrm{R}^{\mathrm{i}}\right)$.

16a/17a ( $30: 70$ ): yellow oil. ${ }^{119} \mathrm{Sn}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$, $93.3 \mathrm{MHz}): \quad \delta^{119} \mathrm{Sn}(\mathbf{1 6 a})=-37.9 ; \quad-57.1 \quad\left(\mathrm{R}^{1}\right)$. $\delta^{119} \mathrm{Sn}(17 \mathbf{a})=-38.2 ;-57.7\left(\mathrm{R}^{1}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $62.9 \mathrm{MHz}): \quad \delta^{13} \mathrm{C}(\mathbf{1 6 a})\left[J\left({ }^{119} \mathrm{Sn},{ }^{13} \mathrm{C}\right)\right]=124.6 \quad(\mathrm{C}-2 / 5$, pyrrolyl group); 114.8 (C-3/4, pyrrolyl group); 177.5 $[\mathrm{br}](\mathrm{B} C=) ; 152.2(=C \mathrm{Sn}) ; 58.1(122 \mathrm{~Hz}) ; 37.9 ; 36.1$; 22.2 (C-Me); $20.8[\mathrm{br}](\mathrm{BCH} 2) ;-5.9(306 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right.$, $\left.\mathrm{R}^{1}\right) ;-6.8(319 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right) . \delta^{13} \mathrm{C}(17 \mathbf{a})\left[J\left({ }^{119} \mathrm{Sn}^{13}{ }^{13} \mathrm{C}\right)\right]$ $=126.7$ (C-2/5, pyrrolyl group); 115.5 (C-3/4, pyrrolyl group $) ; 177.5[\mathrm{br}](\mathrm{BC}=) ; 152.9(=\mathrm{CSn}) ; 48.7$ $(124 \mathrm{~Hz})(108 \mathrm{~Hz}) ; 39.4 ; 35.8 ; 31.2[\mathrm{br}]\left(\mathrm{BCH}_{2}\right) ; 25.9$ $(\mathrm{CMe}) ; \quad-5.9 \quad(317 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}, \quad \mathrm{R}^{1}\right) ; \quad-6.8$ $(325 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right) .{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \quad 80.3 \mathrm{MHz}\right)$ : $\delta^{11} \mathrm{~B}(16 \mathbf{a} / 17 \mathrm{a})=52.0 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right):$ $\delta^{1} \mathrm{H}(16 \mathrm{a} / 17 \mathrm{a})=7.15(\mathrm{~m}) ; 7.02(\mathrm{~m}) ; 6.31(\mathrm{~m}) ; 6.27$ (m); $2.43(\mathrm{~m})$; overlapping multiplets at $1.81-0.77 ; 0.28$ (s) $\left(\mathrm{SnMe}_{3}\right) ;-0.05(\mathrm{~s})\left(\mathrm{SnMe}_{3}, \mathrm{R}^{1}\right)$.

16c/17c (30:70): yellow oil. ${ }^{119} \mathrm{Sn}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $93.3 \mathrm{MHz}): \delta^{119} \mathrm{Sn}(\mathbf{1 6 c})=-42.0 ;-55.5 /-56.8\left(\mathrm{R}^{1}\right)$. $\delta^{119} \operatorname{Sn}(17 \mathrm{c})=-39.2 ;-56.3 /-56.9\left(\mathrm{R}^{1}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, \quad 62.9 \mathrm{MHz}\right): \quad \delta^{13} \mathrm{C}(\mathbf{1 6 c} / \mathbf{1 7 c}$, indolyl groups $)\left[J\left({ }^{119} \mathrm{Sn},{ }^{13} \mathrm{C}\right)\right]=141.1 ; \quad 141.0 ; \quad 140.6 ; \quad 140.5$; $134.4 ; 134.2 ; 133.8 ; 133.5 ; 133.4 ; 132.9 ; 131.2 ; 130.6$;
signals between 115 and 125 are not resolved due to slow rotation about the $\mathrm{B}-\mathrm{N}$ bond; 111.2; 109.8 (2 signals); 107.7. $\delta^{13} \mathrm{C}(\mathbf{1 6 c} / \mathbf{1 7} \mathrm{c}$, boryl groups $)=179.1$ [br]; 178.9 [br]; 178.8 [br]; 178.5 [br]; 154.6; 154.3; $148.5 ; 148.1 ; 57.8 ; 48.6 ; 48.3 ; 39.9 ; 39.3 ; 38.6 ; 37.7$; $36.8 ; 36.5 ; 35.7 ; 35.5 ; 26.0 ; 22.4 ;-5.6 ;-5.9$ (2 signals); $-6.2 ;-6.7 ;-6.9 .{ }^{11} \mathrm{~B} \quad$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $80.3 \mathrm{MHz}): \delta^{11} B(\mathbf{1 6 c} / \mathbf{1 7 c})=51.0$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$; $250 \mathrm{MHz}): \delta^{1} \mathrm{H}=7.41(\mathrm{~m}) ; 7.09(\mathrm{~m}) ; 6.48(\mathrm{~m})$; overlapping multiplets at $2.51-0.83 ; 0.29(\mathrm{~s})\left(\mathrm{SnMe}_{3}\right)$; $-0.13(\mathrm{~s})\left(\mathrm{SnMe}_{3}, \mathrm{R}^{1}\right)$.

18a: yellow oil. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$. $\delta^{13} \mathrm{C}$ (pyrrolyl group) $=122.0$ (broad due to intramolecular rotation)(C-2/5); 114.8 ( $\mathrm{C}-3 / 4$ ). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}$; $\left.250 \mathrm{MHz}): \quad \delta^{1} \mathrm{H}[J()]\right)=7.10(\mathrm{~m})(\mathrm{H}-2 / 5$, pyrrolyl group); $6.68(\mathrm{~s})(85.2 \mathrm{~Hz})(=\mathrm{H}) ; 6.35(\mathrm{~m})(\mathrm{H}-3 / 4$, pyrrolyl group); 2.83 (m); 2.08 (m); 1.64 (m); 1.23 (m); $0.87(\mathrm{~m}) ;-0.04(\mathrm{~s})(54.3 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right)$.

19c: yellow oil. ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}$ (indolyl group $)=147.0(\mathrm{C}-7 \mathrm{a}), 139.1(\mathrm{C}-3 \mathrm{a}) ; 134.0$ (C-2), 123.0 (C-5); 122.1 (C-4); 121.2 (C-6); 116.9 (C-7); $110.0(\mathrm{C}-3) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}=$ overlapping multiplets at 7.5-6.5 (indolyl group), 2.90 $(\mathrm{m})$; overlapping multiplets at $2.10-1.20 ; 1.95$ $(\mathrm{s})(=\mathrm{C} \mathrm{Me}) ; 0.23(\mathrm{~s})\left(\mathrm{SnMe}_{3}\right)$.

20a: yellow oil. ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}($ pyrrolyl group $)=127.6 / 123.9 \quad(\mathrm{C}-2 / 5) ;$ $115.6 / 114.0(\mathrm{C}-3 / 4) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 250 \mathrm{MHz}\right) . \delta^{1} \mathrm{H}$ $=7.17 / 6.97(\mathrm{~m})(\mathrm{H}-2 / 5$, pyrrolyl group $), 6.37 / 6.27$ (m)(H-3/4, pyrrol group), $2.82(\mathrm{~m})$, overlapping multiplets at $2.04-1.20,0.30(\mathrm{~s})(50.6 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right),-0.02$ $(\mathrm{s})(51.3 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}, \mathrm{R}_{1}\right)$.

20c: yellow oil: ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}$ (indolyl group $)=141.0 / 140.4 \quad(\mathrm{C}-7 \mathrm{a})$; $135.1 / 133.9$ (C-3a); 130.8 (C-2); 123.5/122.6/121.4 (2 signals)(C-4/C-5/C-6); 117.3/116.4 (C-7); $110.2 / 109.6(\mathrm{C}-3) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}=$ overlapping multiplets at $7.80-7.15$ (indolyl group); $6.71(\mathrm{~m}) ; 3.05(\mathrm{~m})$; overlapping multiplets at $2.10-1.37$; 0.49 ( 2 signals) $\left(\mathrm{SnMe}_{3}\right)$; $0.14 /-0.08(\mathrm{~s})\left(\mathrm{SnMe}_{3}, \mathrm{R}^{1}\right)$.

22d: yellow oil. ${ }^{1 / 3} \mathrm{C}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}($ carbazolyl group $)=145.0 / 144.0 \quad(\mathrm{C}-4 \mathrm{a} / 5 \mathrm{a})$; $128.8 / 128.2$ (C-1a/8a); 126.8/125.9 (C-3/6); $122.8 / 122.6$ (C-2/7); 120.2/1119.9 (C-1/8); 117.6/116.7 (C-4/5). ${ }^{1}$ H NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}$ $=8.20(\mathrm{~m}) ; 7.53(\mathrm{~m})$; overlapping multiplets at $7.25-$ 7.08; $3.67(\mathrm{~m})$; overlapping multiplets at $2.52-1.35$; 1.99 ( s$) \quad(=\mathrm{C} \mathrm{Me}) ; \quad 0.80 \quad(\mathrm{~m}) ; \quad-0.41$ $(\mathrm{s})(51.0 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right)$.

23d: yellow oil. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}($ carbazolyl group $)=144.4 / 144.0 \quad(\mathrm{C}-4 \mathrm{a} / 5 \mathrm{a})$; $128.7 / 128.6$ (C-1a/8a); 126.9/125.3 (C-3/6); $123.1 / 122.8 \quad(\mathrm{C}-2 / 7) ; \quad 120.1 / 119.8 \quad(\mathrm{C}-1 / 8)$; $118.4 / 116.9(\mathrm{C}-4 / 5)$. ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}$ $\left[J\left({ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}\right)\right]=8.35(\mathrm{~m}) ; 7.96(\mathrm{~m}) ; 7.78(\mathrm{~m})$; overlapping multiplets at $7.40-7.0 ; 3.14(\mathrm{~m})$; overlapping mul-
tiplets at $2.57-0.90 ; 0.36(\mathrm{~s})(50.2 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}\right) ;-0.32$ $(\mathrm{s})(51.0 \mathrm{~Hz})\left(\mathrm{SnMe}_{3}, \mathrm{R}^{1}\right)$.

24a: colourless crystals from hexane at $-78^{\circ} \mathrm{C}$ (m.p.: $42^{\circ} \mathrm{C}$ ). ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6}, 125.8 \mathrm{MHz}$ : $\delta^{13} \mathrm{C}$ (pyrrolyl group $)=124.9(\mathrm{C}-2 / 5) ; 111.7(\mathrm{C}-3 / 4) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6} ; 500 \mathrm{MHz}\right): \delta^{1} \mathrm{H}\left[J\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right)\right]\left[J\left({ }^{1 / 9} \mathrm{Sn},{ }^{1} \mathrm{H}\right)\right]=7.25$ (m)(H-2/5, pyrrolyl group); $6.25(\mathrm{~m})(\mathrm{H}-3 / 4$, pyrrolyl group); $\left.1.67(\mathrm{q})[7.4 \mathrm{~Hz}](41.0 \mathrm{~Hz})(6.1 \mathrm{~Hz})(=\mathrm{CC} \mathrm{H})_{2}\right)$; $1.25(\mathrm{q})[8.0 \mathrm{~Hz}]\left(\mathrm{BC} \mathrm{H}_{2}\right) ; 0.98(\mathrm{t})[8.0 \mathrm{~Hz}]\left(\mathrm{BCH}_{2} \mathrm{CH}_{3}\right)$; 0.88 ( t$)\left[7.4 \mathrm{Hzz}^{2}\right]\left(=\mathrm{CCH}_{2} \mathrm{C} \mathrm{H}_{3}\right) ; 0.30$ $(\mathrm{s})(53.3 \mathrm{~Hz})\left(\mathrm{BCSn} M e_{3}\right) ; 0.27(\mathrm{~s})(51.5 \mathrm{~Hz})\left(=\mathrm{CSn} M e_{3}\right)$.

25c: yellow oil. ${ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}($ indolyl group $)=140.9 / 140.6(\mathrm{C}-7 \mathrm{a}) ; 134.1 \quad(\mathrm{C}-$ 3a); 132.9/130.5 (C-2); 123.3/123.2/121.2 (C-4/C-5/C-6); 116.9/115.8 (C-7); 109.8/107.6 (C-3). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}$ ): $\delta^{\prime} \mathrm{H}=$ overlapping multiplets at 7.68-6.70 (indolyl group); $2.35(\mathrm{~m}) ; 1.92-1.65(\mathrm{~m})$; $0.31(\mathrm{~s})\left(\mathrm{BCSnMe}_{3}\right) ; 0.13(\mathrm{~s})\left(=\mathrm{CSnMe}_{3}\right)$.

25d: yellow oil. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 62.9 \mathrm{MHz}\right)$ : $\delta^{13} \mathrm{C}($ carbazolyl group $)=143.4(\mathrm{C}-4 \mathrm{a} / 5 \mathrm{a}) ; 125.8(\mathrm{C}-$ 1a/8a); 125.2 (C-3/6), 120.8 (C-2/7), 119.7 (C$1 / 8), 112.9(\mathrm{C}-4 / 5) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}$ $=8.04(\mathrm{~m})(\mathrm{H}-4 / 5$, carbazolyl group $), 7.57(\mathrm{~m})(\mathrm{H}-1 / 8$, carbazolyl group); $7.38(\mathrm{~m})(\mathrm{H}-3 / 6$, carbazolyl group), $7.24(\mathrm{~m})(\mathrm{H}-2 / 7$, carbazolyl group), $2.41(\mathrm{~m}) ; 1.88(\mathrm{~m})$; $1.72(\mathrm{~m}) ; 0.36(\mathrm{~s})\left(\mathrm{BCSnMe}_{3}\right) ; 0.17(\mathrm{~s})\left(=\mathrm{CSnMe}_{3}\right)$.

21: in mixture with $N$-trimethylstannylcarbazole, left as a colourless solid. ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{C}_{6} \mathrm{D}_{6} ; 250 \mathrm{MHz}\right): \delta^{1} \mathrm{H}$ $=3.33(\mathrm{~m})(\mathrm{H}-1)$; overlapping multiplets at $2.40-1.20$; $1.94(\mathrm{~s})\left(\mathrm{H}-2^{\prime \prime}\right) ; 1.92(\mathrm{~s})\left(\mathrm{H}-2^{\prime \prime}\right) ; 1.75(\mathrm{~s})\left(\mathrm{H}-3^{\prime}\right) ;-0.28$ (s) $\left.\left.\left(\mathrm{Sn}\left(\mathrm{C}-\mathrm{I}^{\prime \prime}\right) \mathrm{Me}_{3}\right) ; 0.27(\mathrm{~s})(\mathrm{Sn}) \mathrm{C}-\mathrm{I}^{\prime \prime \prime}\right) \mathrm{Me}_{3}\right)$.

### 4.2. Crystal structure analysis of $24 a$

$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{BNSn}_{4}(M=838.2) ; \quad F(000)=812$, colourless, isometrically $0.40 \times 0.35 \times 0.30 \mathrm{~mm}^{3}$ (m.p. $42^{\circ} \mathrm{C}$ ); triclinic, $\quad P \overline{1} ; \quad a=9.133(2), \quad b=12.105(2), \quad c=$ $16.515(2) \AA, \alpha=76.32(2), \beta=82.63(2), \gamma=69.71(2)^{\circ}$, volume $1661.7(5) \AA^{3} ; \quad Z=2$; density (calc.) $=$ $1.675 \mathrm{Mg} \mathrm{m}^{-3}$; absorption coefficient $2.982 \mathrm{~mm}^{-1}$; data were collected with a Siemens P4 diffractometer (Mo K $\alpha$; graphite monochromator; $\lambda=0.71073 \AA ; 3.0$ $<2 \Theta<55^{\circ}$ ); $T=173 \mathrm{~K}$; 6923 reflections, 5725 independent reflections ( $R_{\text {int. }}=0.93 \%$ ), 5725 observed reflections [ $F>0.0 \sigma(F)$ ]; Lorentz and polarization correction; structure solution by Patterson methods followed by difference Fourier synthesis using the SHELTX-PLUS program and refined against $F$ (non-hydrogen atoms anisotropic; all hydrogen positions were calculated and refined using the 'riding model' with fixed isotropic temperature factors). The refinement (full matrix least squares), using 272 parameters, converged at $R / w R=3.02 / 2.19 \%$. The max. $/ \mathrm{min}$. residual electron density was $1.68 /-0.63 \mathrm{e}^{-} \AA^{-3}$.

## Acknowledgements

The support of this work by the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft and Volkswagenstiftung is gratefully acknowledged (B.W., H.E.M., B.S., W.M.). We thank J. Lichtenwald and M. Jandke for their help with experimental work.

## References

[I] P.J. Stang, F. Diederich (Eds.), Modern Acetylerie Chemistry, VCH, Weinheim, 1995.
[2] (a) W.E. Davidsohn, M.C. Henry, Chem. Rev. 67 (1967) 73. (b) C. Cauletti, C. Furlani, A. Sebald, Gazz. Chim. Ital. 118 (1988) 1. (c) V.S. Zavgorodnii, A.A. Petrov, Chem. Rev. 18 (1993) 1.
[3] B. Wrackmeyer, Coord. Chem. Rev. 145 (1995) 125.
[4] B. Wrackmeyer, B. Schwarze, unpublished results.
[5] H. Bellut, C.D. Miller, R. Köster, Synth. Inorg. Met. Org. Chem. I (1971) 83.
[6] B. Wrackmeyer, B. Schwarze, W. Milius, Inorg. Chim. Acta 241 (1996) 87.
[7] (a) B. Wrackmeyer, I. Ordung, B. Schwarze, J. Organomet. Chem. in press. (b) M. Yalpani, R. Boese, R. Köster, Chem. Ber. 121 (1988) 287.
[8] B. Wrackmeyer, B. Schwarze, J. Organomet. Chem. in press.
[9] J.K.M. Saunders, M.D. Mersh, Progr. NMR Spectrosc. 15 (1982) 353.
[10] A. Schmidt, B. Wrackmeyer, Z. Naturforsch. Teil B: 33 (1978) 835.
[11] C. Bihlmayer, B. Wrackmeyer, J. Organomet. Chem. 321 (1987) 25.
[12] C. Bihlmayer, S.T. Abu-Orabi, B. Wrackmeyer, J. Organomet. Chem. 321 (1987) 25.
[13] B. Wrackmeyer, J. Organomet. Chem. 205 (1981) 1.
[14] B. Wrackmeyer, G. Kehr, H.E. Maisel, U. Dörfler, W. Milius, J. Organomet. Chem. in press.
[15] (a) A. Berndt, Angew. Chem. 105 (1993) 1034; Angew. Chem Int. Ed. Engl. 32 (1993) 985. (b) D. Steiner H.-J. Winkler, S. Wocadio, S. Fau, W. Massa, G. Frenking, A. Berndt, Angew. Chem. 106 (1994) 2172; Angew. Chem. Int. Ed. Engl. 33 (1994) 2964.
[16] J. Rosenplänter, B. Schmidt, A. Schmotz, G.E. Herberich, Int. Meet. on Boron Chemistry IMEBORON IX, Heidelberg, 1996, Poster P23.
[17] E. Fluck, E.H.E. Pietsch, A. Kotowski, M. Becke-Goehring (Eds.), Gmelin Handbook of Inorganic Organometallic Chemistry, vol. 3a, 4th Supplement, Springer, Berlin, Bth edition, 1991, pp. 219-239.
[18] G. Menz, B. Wrackmeyer, Z. Naturforsch. Teil B: 32 (1977) 1400.
[19] B. Wrackmeyer, C. Bihlmayer, M. Schilling, Chera. Ber. 116 (1983) 3182.
[20] S. Kerschl, B. Wrackmeyer, J. Chem. Soc. Chem. Commun. (1986) 403.
[21] R. Köster, G. Seidel, B. Wrackmeyer, Chem. Ber. 126 (1993) 319.
[22] B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 16 (1985) 73.
[23] B. Wrackmeyer, in: R.B. King, J.J. Eisch (Eds.), Organometallic Synthesis, vol. 3, Elsevier, New York, 1986, p. 572.
[24] H. Bellut, R. Köster, Justus Liebigs Ann. Chem. 733 (1970) 86.


[^0]:    Corresponding author.
    ${ }^{1}$ Dedicated to Professor G. Huttner on the occasion of his 60th birthday.

[^1]:    ${ }^{2}$ Further details of the crystal structure are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wis-senschaftlich-technische Information mbH , D-76344 EggensteinLeopoldshafen (Germany) on quoting the depository number CSD406408 , the names of the authors and the journal citation.

[^2]:    ${ }^{4} \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$; [br]: broad signal owing to partially relaxed ${ }^{13} \mathrm{C}-{ }^{11} \mathrm{~B}$ scalar coupling.
    ${ }^{\mathrm{b}} \quad \delta^{199} \mathrm{Sn}\left(\mathrm{R}^{1}\right)=-57.5$.
    c $\delta^{119} \mathrm{Sn}\left(\mathrm{R}^{1}\right)=-55.6$.
    ${ }^{\text {d }}$ Rotational barrier at room temperature; $\delta^{199} \mathrm{Sn}\left(\mathrm{R}^{1}\right)=-56.0 /-56.8$.
    ${ }^{\mathrm{e}} \delta^{119} \mathrm{Sn}\left(\mathrm{R}^{1}\right)=-53.9$.

[^3]:    $\begin{array}{lll}\text { a } & \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C} ;[\mathrm{br}] \text { broad signal owing to partially relaxed }{ }^{13} \mathrm{C}-{ }^{11} \mathrm{~B} \text { scalar coupling. } \\ { }^{\mathrm{b}} & \delta^{13} \mathrm{C}(1,5 \text {-cyclooctanediyl) }=34.0 \text { (br, due to slow rotation around the } \mathrm{BN} \text { bond); 29.6; } 25.8[\mathrm{br}] ; 23.1 \text {. }\end{array}$
    ${ }^{c}$ Coalescence temperature at $25^{\circ} \mathrm{C} . \delta^{3 / 3} \mathrm{C}(1,5$-cyclooctanediyl): not resolved.
    e Rotational barrier at room temperature. $\delta^{1.3} \mathrm{C}(1.5$-cyclooctanediyl) $=48.7$ [118][110]; 34.9; 33.7; 31.2; 30.9; 30.8; 30.3; 29.9; 29.6; 27.5 [br]; 25.9 [br]; 24.1; 23.8; 23.1; 22.8; $\delta^{119} \operatorname{Sn}\left(\mathrm{R}^{1}\right)=-46.1 /-58.4$.
    $\mathrm{g} \delta^{\delta^{13} \mathrm{C}(1,5 \text {-cyclooctanediyl }):=35.7 ; 35.2 ; 24.5 ; 30.5[\mathrm{br}] ; 26.1 ; 25.5 ; \delta^{119} \mathrm{Sn}\left(\mathrm{R}^{1}\right)=-57.3 ;{ }^{2} J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right)=897 \mathrm{~Hz} .}$

[^4]:    ${ }^{a} \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$; [br]: broad signal owing to partially relaxed scalar coupling ${ }^{1} J\left({ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}\right)$.
    ${ }^{\circ}{ }^{5} \mathrm{~J}\left[{ }^{6}{ }^{19} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right]=27.9 \mathrm{~Hz}$.

[^5]:    ${ }^{\text {a }} \mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$; [br]: broad signal owing to partially relaxed ${ }^{13} \mathrm{C}-{ }^{11} \mathrm{~B}$ scalar coupling.
    b $\left.\delta^{13} \mathrm{C}(\mathrm{Et})=29.5[3] .5\right][25.7]\left(=\mathrm{CCH}_{2}\right) ; 16.3[\mathrm{br}]\left(\mathrm{BCH}_{2}\right) ; 13.2\left(=\mathrm{CCH}_{2} \mathrm{CH}_{3}\right) ; 11.1\left(\mathrm{BCH}_{2} \mathrm{CH}_{3}\right) . \mathrm{At}-50^{\circ} \mathrm{C}: \delta^{119} \mathrm{Sn}\left(\mathrm{BCSn} n_{2}\right)=19.7 ; 6.8$;
    $\delta^{119} \mathrm{Sn}\left(=\mathrm{CSn}_{2}\right)=-6.1 ;-11.6 . \delta^{13} \mathrm{C}\left(\mathrm{SnMe}_{3}\right)=-3.9 ;-4.3 ;-6.2 ;-6.4$.
    ${ }^{c} \delta^{13} \mathrm{C}(1,4$-butanediyl $)=32.9 ; 27.0 ; 23.6 ; 22.0[\mathrm{br}] ;{ }^{5} J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right)=205 \mathrm{~Hz}$.
    ${ }^{d} \delta^{13} \mathrm{C}(1,4$-butanediyl $)=43.1 ; 32.0 ; 26.7[\mathrm{br}] ; 22.4 ;{ }^{5} J\left({ }^{119} \mathrm{Sn},{ }^{119} \mathrm{Sn}\right)=216 \mathrm{~Hz}$.

